Institut de Chimie Moléculaire et des Matériaux d'Orsay

Rémy Ricoux

Ingénieur de Recherche
Bât. 420LCBB – ICMMO
Université Paris-Sud
15, rue Georges Clémenceau
91405 Orsay Cedex
FRANCE

+33 1 69 15 47 23
remy.ricoux@u-psud.fr

Publications

Functionalized Artificial Bidomain Proteins Based on an α-Solenoid Protein Repeat Scaffold: A New Class of Artificial Diels–Alderases. T. Di Meo, K. Kariyawasam, W. Ghattas, M. Valerio-Lepiniec, G. Sciortino, J.-D. Maréchal, P. Minard, J.-P. Mahy, A. Urvoas, R. Ricoux, ACS Omega, 2019, 4, 4437-4447

Incorporation of a minimal nucleotide into DNA. P. Röthlisberger, F. Levi-Acobas, I. Sarac, R. Ricoux, J.-P. Mahy, P. Herdewijn, P. Marlière, M. Hollenstein, Tetrahedron Lett., 2018, 59, 4241-4244

Enzyme encapsulation in mesoporous Metal-Organic Frameworks for selective biodegradation of harmful dye molecules. E. Gkaniatsou, C. Sicard, R. Ricoux, L. Benahmed, F. Bourdreux, Q. Zhang, C. Serre, J.-P. Mahy, N. Steunou, Angew. Chem. Intern. Ed., 2018, 57, 16141-16146

Receptor-based artificial metalloenzymes on living human cells. W. Ghattas, V. Dubosclard, A. Wick, A. Bendelac, R. Guillot, R. Ricoux, J.-P. Mahy, J. Am. Chem. Soc., 2018, 140, 8756-8762

Reactions of persulfides with the heme cofactor of oxidized myoglobin and microperoxidase 11: reduction or coordination. E. Galardon, F. Huguet, C. Herrero, R. Ricoux, I. Artaud, D. Padovani, Dalton Trans., 2017, 46, 7939-7946

αRep A3: A versatile artificial scaffold for metalloenzyme design. T. Di Meo, W. Ghattas, C. Herrero, C. Velours, P. Minard, J.-P. Mahy, R. Ricoux, A. Urvoas, Chem. Eur. J., 2017, 23, 10156-10166

Metal–organic frameworks: a novel host platform for enzymatic catalysis and detection. E. Gkaniatsou, C. Sicard, R. Ricoux, J.-P. Mahy, N. Steunou, C. Serre, Mater. Horiz., 2017, 4, 55-63

Photoassisted Oxidation of Sulfides Catalyzed by Artificial Metalloenzymes Using Water as an Oxygen Source. C. Herrero, N. Nguyen-Thi, F. Hammerer, F. Banse, D. Gagné, N. Doucet, J.-P. Mahy, R. Ricoux, Catalysts, 2016, 6, 202

Artificial Metalloenzymes with the Neocarzinostatin Scaffold: Toward a Biocatalyst for the Diels–Alder Reaction. W. Ghattas, L. Cotchico-Alonso, J.-D. Maréchal, A. Urvoas, M. Rousseau, J.-P. Mahy, R. Ricoux, ChemBioChem, 2016, 17, 433-440

Oxidation catalysis via visible-light water activation of a [Ru(bpy)3]2+ chromophore BSA-metallocorrole couple. C. Herrero, A. Quaranta, R. Ricoux, A. Trehoux, A. Mahammed, Z. Gross, F. Banse, J.-P. Mahy, Dalton Trans., 2016, 45, 706-710

Bio-inspired electron-delivering system for reductive activation of dioxygen at metal centres towards artificial flavoenzymes. Y. Roux, R. Ricoux, F. Avenier, J.-P. Mahy, Nature Communications, 2015, 6, 8509

An Artificial Enzyme Made by Covalent Grafting of an FeII Complex into β-Lactoglobulin: Molecular Chemistry, Oxidation Catalysis, and Reaction-Intermediate Monitoring in a Protein. C. Buron, K. Sénéchal-David, R. Ricoux, J.-P. Le Caër, V. Guérineau, P. Méjanelle, R. Guillot, C. Herrero, J.-P. Mahy, F. Banse, Chem. Eur. J., 2015, 21, 12188-12193

From "hemoabzymes" to "hemozymes": towards new biocatalysts for selective oxidations. J.-P. Mahy, J.-D. Maréchal, R. Ricoux, Chemical Communications, 2015, 51, 2476-2494

Various strategies for obtaining oxidative artificial hemoproteins with a catalytic oxidative activity: from "Hemoabzymes" to "Hemozymes"? J.-P. Mahy, J.-D. Maréchal, R. Ricoux, J. Porphyrins Phthalocyanines, 2014, 18, 1063-1092

Neocarzinostatin-based hybrid biocatalysts with a RNase like activity. A. Urvoas, W. Ghattas, J.-D. Maréchal, F. Avenier, F. Bellande, W. Mao, R. Ricoux, J.-P. Mahy, Bioorg. Med. Chem., 2014, 22, 5678-5686

Neocarzinostatin-based hybrid biocatalysts for oxidation reactions. E. Sansiaume-Dagousset, A. Urvoas, K. Chelly, W. Ghattas, J.-D. Maréchal, J.-P. Mahy, R. Ricoux, Dalton Trans., 2014, 43, 8344-8354

A unique 1-amino-1-cyclopropane carboxylate cupric-cryptate hosting sodium. W. Ghattas, R. Ricoux, H. Korri-Youssoufi, R. Guillot, E. Riviere, J.-P. Mahy, Dalton Trans., 2014, 43, 7708-7711