

Université de Paris-Sud

Laboratoire d'Etudes des Matériaux Hors Equilibre Université de Paris-Sud, Bât. 410, CNRS UMR 8647 F-91405 Orsay Cedex, France

Technische Universität Clausthal

Institut für Metallurgie TU Clausthal, Robert-Koch-Str. 42 D-38678 Clausthal-Zellerfeld, Germany

Thermodyn. et Physico-Chimie des Matériaux Domaine Universitaire, B.P. 75 F-38402 Saint Martin d'Hères Cedex, France

INPG-ENSEEG-UJF

C. LEGROS, B. LESAGE

M. KILO, G. STREHL, G. BORCHARDT

C. CARRY

PURE AND FINE YTTRIA-DOPED α -ALUMINA **SAMPLE ELABORATION AND DIFFUSION STUDIES**

SAMPLES

Sample	Pressing	Sintering	Y analysis (ppm)	Grain size (µm)	Density (% d _{th})	Microstructure
100Y1	CIP	1350°C + 1h	-	< 1	98	
	HIP	1300°C + 2h	82	1.5	100	
100Y2	CIP	1400°C + 2h	-	2	98	
	HIP	1400°C + 2h	76	2.5	100 🗖	$\rightarrow 2\mu m$
1000Y1	CIP	1375°C + 1h	_	< 1	96	
	HIP	1300°C + 2h	910	0.5	100	<u>2µm</u>
1000Y2	CIP	1450°C + 2h	_	3-4	96	
	HIP	1400°C + 2h	1000	5	100	2µm
	I					Backscattered electron

V Elaboration of full dense samples.

V Samples have approximately the amount of yttrium strived for. The scale factor between 100Y and 1000Y doping levels are conserved.

image on a polished surface

V Microstructures and grain sizes correspond well to the expected data from grain size vs (Y/Al) graph. For 1000Y2, the backscattered electron image of a polished surface shows clearly precipitates of Y₃Al₅O₁₂ (YAG) probably at GB.

Normalised ¹⁸O penetration profile 24h 1200°C bulk + grain boundaries $({}^{18}\mathrm{O})_{\mathrm{X}}/({}^{18}\mathrm{O})_{\mathrm{0}}$ **100Y1** grain boundaries 0.5 **100Y2** $2\,10^{-5}$ depth (cm)

¹⁸O penetration profile for bulk diffusion

Corrected profile obtained by substraction of the grain boundary diffusion

DIFFUSION STUDIES

RESULTS

Two parts

① a strong decrease of ¹⁸O concentration interpreted as bulk diffusion

Bulk diffusion is quite the same in 100Y1 and 100Y2 because the bulk is in both cases saturated with yttrium

2 a long range diffusion related to diffusion in grain boundaries

GB diffusion is faster in 100Y1 than in 100Y2 because the density of Y atoms segregated in grain boundaries is smaller in the finegrained 100Y1

CONCLUSION

- **α**-alumina was doped with yttrium (100 and 1000 ppm cationic Y/Al) from a slurry of high purity α -alumina powder and an aqueous yttrium nitrate solution.
- **18** 180 diffusion tests were performed on 100 ppm Y/Al full dense and homogeneous α -alumina polycrystals with two different grain sizes.
- **A** Oxygen diffusion coefficients in the bulk are independent of the grain size because the solubility in bulk α -alumina doesn't change (~ 10 ppm). These results are in good agreement with observations of Le Gall & al. on Y doped α -alumina single crystals. (M. Le Gall, A.M. Huntz, B. Lesage, C. Monty, J. Bernardini, J. Mater. Sci. 30, 201 (1995))

A Oxygen diffusion coefficients in GB depends on the Y concentration in GB :

⇒for large grain sizes, the oxygen mobility is slow because the yttrium saturation level in GB is reached and induces Y₃Al₅O₁₂ (YAG) precipitation. ⇒for small grains sizes, the oxygen diffusion is enhanced, because of the low density of Y in GB (below the saturation limit) increasing the number of free defects.

D_{GB} was calculated using the Wipple-Le Claire equation

$$D_{GB} * \delta = 1.322 \sqrt{\frac{D_B}{t}} \left(\frac{-d \ln C}{dx^{6/5}}\right)^{-5/3}$$

100Y1⇒
$$D_{GB} \approx 10^{-11} \text{ cm}^2 \text{s}^{-1}$$
100Y2⇒ $D_{GB} \approx 2.10^{-12} \text{ cm}^2 \text{s}^{-1}$

- \bigvee D_{GR} decreases with grain size due to a lower segregant atom density in smaller grains
- **For bulk diffusion, results are in agreement with** earlier results
- For GB diffusion, D_{GB} values are much greater than those deduced from the extrapolation of D_{GB} values at higher temperatures