CERIUM DIFFUSION IN IRRADIATED AND NON-IRRADIATED SINGLE AND POLYCRYSTALLINE YTTRIA STABILIZED ZIRCONIA

V. MENVIE BEKALE¹, C. LEGROS¹, G. SATTONNAY¹, A.M. HUNTZ¹, Chr. ARGIRUSIS², L. DÖRRER², L. THOME³, F. JOMARD⁴

¹ Laboratoire d'Etude des Matériaux Hors Equilibre, ICMMO, UMR 8182, Univ. Paris-Sud 11, 91405 Orsay, France ² Institut für Metallurgie, TU-Clausthal, 38787 Clausthal-Zellerfeld, Germany ³ CSNSM, CNRS/IN2P3, Univ. Paris-Sud 11, 91405 Orsay, France ⁴ GEMAC, UMR 8635, Université de Versailles-SQ, 92195 Meudon Cedex, France

MOTIVATION OF THE STUDY

Cubic yttria-stabilized zirconia (YSZ) is considered as one of the most promising candidates as an inert matrix for the transmutation of actinides produced in

Irradiation with Au ions of low energy 4 MeV 10¹⁵ cm⁻²

nuclear power plants. Safety considerations require the evaluation of the retention properties of volatile fission products in the selected matrices. Such a problem can be studied by following the cationic diffusion upon subsequent thermal treatments. For example, cerium as tetravalent actinide and gadolinium as trivalent actinide can be used.

The present work is focused on cerium (Ce) diffusion in non-irradiated and irradiated YSZ. Samples were irradiated at room temperature with 4 MeV or 20 MeV Au ions at fluences ranging from 5 10¹⁴ to 5 10¹⁵ cm⁻². The Ce diffusion profiles were determined by secondary ion mass spectrometry (SIMS) and allowed the determination of bulk diffusion ($D_{\rm B}$) in single crystals and effective (D_{eff}) , bulk and grain boundary diffusion parameters (αD_{GB}) in polycrystals. The dependence of the diffusion coefficients on temperature is described by means of Arrhenius plots and the influence of radiation defects on cationic diffusion is discussed.

 D_B and αD_{GB} CALCULATIONS

Irradiation with Au ions of high energy 20 MeV

Lem

he

spin coating or physical vapor deposition (PVD) on the surface of polished samples

Diffusion annealing conditions

Sample	Irradiation conditions		Τ (° C)	t (days)
Polycrystal 8YSZ	Au 4 MeV	10 ¹⁵ cm ⁻²	1673	2
			1373	30
			1273	45
	Au 20 MeV	5 10 ¹⁴ , 5 10 ¹⁵ cm ⁻²	1673	2
			1373	30
			1273	45
Polycrystal 10YSZ	Au 4 MeV	$10^{15} \mathrm{cm}^{-2}$	1673	2
			1373	19
			1273	45
Single crystal 9.5YSZ	Au 4 MeV	$10^{15} \mathrm{cm}^{-2}$	1673	2
			1373	30
			1273	45

After conversion of the sputtering time into crater depth determined by profilometry

- \succ For the lowest fluence (5 10¹⁴ cm⁻²), bulk diffusion D_B and grain boundary diffusion αD_{GB} parameters do not change with irradiation damage.
- \succ For the highest fluence (5 10¹⁵ cm⁻²), at low temperatures, D_B is smaller in irradiated materials.

CeO₂ deposited 10YSZ **Region 1** T = 1200 °C t = 19 days $1 \ 10^{-8} \ 2 \ 10^{-8} \ 3 \ 10^{-8} \ 4 \ 10^{-8} \ 5 \ 10^{-8} \ 6 \ 10^{-8} \ 7 \ 10^{-8} \ 8 \ 10^{-8}$ x^{2} (cm²) Type-B kinetics regime $\phi = 5.10^{-4} \,\mathrm{cm}$; $\delta = 10^{-7} \,\mathrm{cm}$ $f = \frac{3\delta}{4}$

 $\frac{C(X)}{C_0} = \exp\left(-\frac{X^2}{4D_{eff}t}\right)$

Grain boundary diffusivity αD_{GB} CeO₂ deposited 10YSZ Γ = 1200 °C t = 19 days 1000 **Region 2** 100

x^{6/5} (cm^{6/5})

Hart equation

peak displacement damage (dpa)

peak displacement damage (dpa)

dpa = number of displacement per atom

CONCLUSIONS

The study of Ce diffusion in irradiated and non-irradiated single and polycrystalline yttria stabilized zirconia in the temperature range $1000^{\circ}C - 1400^{\circ}C$ in air has shown that :

- For low damage level (dpa < 5), D_B is quite the same in both irradiated and nonirradiated materials,
- For high damage level (~30 dpa), D_B is slown down probably due to trapping by irradiation defects,
- Irradiation damage has no influence on grain boundary diffusion.

Contacts : <u>vincent.menvie@u-psud.fr</u> or <u>corinne.legros@u-psud.fr</u>

This project has been supported by PAI PROCOPE n°09426VE, 2005-2006

Bulk diffusivity D_B